RESEARCH ARTICLE

OPEN ACCESS

Wind-Thermal Energy Dispatch Integrated With Energy Storage Systems(ESS).

Akanksha Bhatt, Aayush Shrivastava, Manjaree Pandit

Department of Electrical Engineering

M.I.T.S., Gwalior, India

akankshabhatt07@gmail.com, mr.aayushshrivastava@gmail.com, manjaree p@hotmail.com

Abstract

Particle swarm optimization (PSO) algorithm is applied to find optimal dispatch for minimizing cost of thermal and wind generating units integrated with energy storage systems like compressed air energy storage. Wind power generation depends on the wind speed. The wind power is random in cost model considered by taking a practical dynamic dispatch model. This paper considers six thermal generator and wind turbine taken from IEEE 118-bus test system with CAES systems. The model includes thermal generating units' constraints like ramp rate limits and valve point loading (VPL) effects. CAES systems provide better balancing between energy supply and demand. Integration of energy storage systems with thermal and wind generating units makes electrical systems more reliable and more efficient. The capital cost of CAES system becomes much lower compared with other storage technologies like batteries, pumped hydroelectric storage systems etc. Practical constraints lead to non-linear and non-convex optimization problems. Two cases are studied using Particle swarm optimization (PSO) and interior point algorithm. Particle swarm optimization (PSO) reduces the cost in comparison of interior point algorithm.

Keywords— cost minimization; valve point loading; ramp rate limits; partical swarm optimization(PSO); compressed air energy storage systems (CAES)

percentage is given in Fig.1. hydro electric renewable 5% nuclear 14% 38% natural other gas gases 39% 1% petroleum 3%

INTRODUCTION

Electricity is essential for modern society. The

electric power system has generation, transmission and distribution systems. Electricity can be generated by the renewable and non renewable energy resources. The

I.

Fig. 1. Percentages of the renewable and non-renewable energy resources.

Energy consumption is depending on the fossil fuels in most of the countries. Electricity can be generated by the conventional and non conventional power plants. Technological options for electrical generation are given in the Table 1. [2]

Nuclear	Uranium
Fossi-fired steam	Coal, oil, residual oil
Hydroelectric	Falling water
Combustion turbines	Distillate oil, residual oil
Diesel Engines	Diesel fuel
Combined cycle	Oil or natural gas
Pumped storage	Falling water
Steam turbine	Biomass, geothermal
Fuel cells	Hydrogen rich gas

TABLE I. TECHNOLOGICAL OPTIONS FOR ELECTRICAL GENERATION.

Primary energy sources

Type of power station

photovoltaic

Wind turbine

To drive electrical generators, electricity obtained from thermal power plants by burning fossil fuels such as natural gas, coal, oil etc. Renewable energy sources like wind energy, are widely applied to reach

Rustamji Institute of Technology

solar

wind

emission reduction with the increasing concern of environmental protection. Environmental protection has been raised recently due to the concerns regarding global weather and air pollution.

The estimation of wind is always a problem. Thus, when wind power is insufficient, the electricity demand will be provided by other sources, such as energy storage systems. Due to random nature of wind, different methods are used with renewable energy generation such as pumped hydroelectric storage[4,5], compressed air energy storage, batteries, including lead acid, nickel cadmium and lithium ion, [8,9] hydrogen storage, capacitors and super capacitors, flywheel and superconducting magnetic energy storage [1].

Energy storage systems (ESSs), based on the use of wind energy surplus, is currently investigated. Among the many energy-storage systems, only pumped storage and CAES systems have the capability for large-scale wind energy integration.

- ESSs provide better balancing between energy supply and demand.
- When energy deficits appear, large-scale energy storage infrastructure that may allow storage of wind energy in excess and feed the grid. [3]
- A large-scale of renewable energy resources can be fed into the grid which will reduce the potential impact on the environment.

II. COMPRESED AIR ENERGY STORAGE (CAES) SYSTEMS

A. Operation principle

Operation of a typical energy storage systems (ESSs) are based on the principle that when energy excess is available (i.e., when energy demand is lower than supply) the system operates in "charging" mode and stores the surplus of electrical energy in a specific storage media through energy conversion. Energy remains stored in the system until electricity supply fails to cover demand or an economic incentive appears for the ESS to deliver its energy to the grid. At that point, the required amount of energy is drawn from the storage and is converted back to useful electricity so as to serve the demand side. [6,10]

The CAES systems using this principle and storage media in CAES is air. The capital cost of CAES becomes much lower compared with other storage technologies. CAES is the preferable technology compared with pumped hydroelectric storage, lead acid batteries, and vanadium redox batteries in terms of the capital cost. There are more geologically suitable sites for CAES than for the pumped storage system. [2] Some of the compressed air energy storage sites are given in chronological order in Fig. 2. The integration of CAES systems with wind and thermal generating units changed the industrial scenario during the last few decades. And make the electrical system more efficient, robust and user friendly.

Rustamji Institute of Technology

III. PROBLEM FORMULATION

This section provides mathematical formulation. Mathematically formulated cost as an objective function of this paper is-(1)

Where, Costt (t) - the total cost of thermal generation units at

time horizon t [\$/h], Pt(i, t) - the power output of thermal unit i at time horizon t [MW]

A. Thermal power constraints are-2)

Where, Pmin the minimum power output of the thermal generation unit i, Pmax the maximum power output of the thermal generation unit i.

Equation (1) shows total cost using quadratic function. Constraints of real power operation are modeled in equation (2) and ramp rate limits are given in equation (3). Ramp rate limits are a dynamic constraints that complicate the optimized solution.

Fig. 2. CAES: History in chronological order-

B. valve point loading (VPL) effect:

A rectified sinusoidal function is added in the cost function of ith unit for accurate results of VPL effects. A mathematical formulation of the cost function of conventional thermal units with valve

point loading (VPL) effects is given.

$$e_i \times \sin\left(f_i \times \left(P_i^{\min} - P_i\right)\right)$$

 e_i and f_i are the fuel cost-coefficients of the ith unit of to model VPL effects. Table II gives conventional thermal generator units Characteristics.[6]

 TABLE II.
 CONVENTIONAL THERMAL GENERATOR UNITS CHARACTERISTICS.[6]

Unit	Pmin	Pmax	a(i)	b(i)	C(i)	RU	RD
1	5	30	0.0697	26.2438	31.67	15	15
2	5	30	0.0697	26.2438	31.67	15	15
3	5	30	0.0697	26.2438	31.67	15	15
4	150	300	0.0109	12.8875	6.78	150	150
5	100	300	0.0109	12.8875	6.78	150	150
6	10	30	0.0697	26.2438	31.67	15	15

C. Wind power constraints are-

Fig3 and Fig4 shows the variation of the wind speed and wind power output with time respectively. Total generated power can be calculated by using the following equation-

Fig. 4. Variation of wind power output (\$/MW) with time (hour).

wind turbine k [m/s]. Parameters of the 2.05 MW wind turbine are given in Table II. [2]

$$P_{w}(k,t) = \begin{cases} 0 & V_{WS}(t) < V_{cutin}(k), V_{WS}(t) > V_{cutout}(k) \\ P_{WGmax}(k) * (\frac{V_{WS}(t) - V_{cutin}(k)}{V_{rated}(k) - V_{cutin}(k)})^{3} & V_{cutin}(k) \le V_{WS}(t) \le V_{rated}(k) \\ P_{WGmax}(k) & V_{rated}(k) \le V_{WS}(t) \le V_{cutout}(k) \end{cases}$$

TABLE III. PARAMETERS OF THE 2.05MW WIND TURBINE

(5)

V _{cutin} (m/s)	V _{rated} (m/s)	V _{cutout} (m/s)	P _{WGmax} (MW)
2	14	25	2.05

IV. PARTICLE SWARM OPTIMISATION (PSO)

Particle swarm optimization (PSO) is a robust stochastic optimization technique based on the movement and intelligence of swarms. PSO applies the concept of social interaction to problem solving. It was developed in 1995 by James Kennedy (social-psychologist) and Russell Eberhart (electrical engineer).

Each particle keeps track of its coordinates in the solution space which are associated with the best solution (fitness) that has achieved so far by that particle. This value is called personal best, pbest. Another best value that is tracked by the PSO is the best value obtained so far by any particle in the neighborhood of that particle. This value is called gbest.

The modification of the particle's position can be mathematically modeled according the following equation-

Vik+1 = wVik +c1 rand1(...) x (pbesti-sik) + c2 rand2(...) x

(gbest-sik)

where, PWGmax(k) -the rated power of wind turbine k [MW], Vws(t) -the forecasted wind speed at time t [m/s], Vcutin(k) -the cut in speed of wind turbine k [m/s], Vcutout(k) -the cut out speed of wind turbine k [m/s], Vrated (k) -the rated speed of

where, vik : velocity of agent i at iteration k, w: weighting function, cj : weighting factor, rand : uniformly distributed random number between 0 and 1. sik : current position of agent i at iteration.

The following weighting function is usually (6)utilized in

w = wMax - [(wMax - wMin) x iter]/maxIter(7)

where, wMax= initial weight, wMin = final weight, maxIter = maximum iteration number, iter = current iteration number. TABLE IV. OPTIMAL DISPATCH RESULTS WITH RAMP RATE LIMITS AND VPL EFFECT USING PSO.

Time	P1(MW)	P2(MW)	P3(MW)	P4(MW)	P5(MW)	P6(MW)
1	5.00	5.00	5.00	196.2107	162.8319	10.00
2	5.00	5.00	5.00	186.4135	162.8318	10.00
3	5.00	5.00	5.00	196.2189	162.8268	10.00
4	5.0000	5.0022	5.0000	186.4031	162.5761	10.0352
5	5.0000	5.0000	5.0000	208.1753	162.8301	10.0000
6	8.9287	8.2092	9.5207	150.0192	162.8414	10.0000
7	5.0000	5.0000	5.0000	186.3789	162.8203	10.0165
8	5.0000	5.0000	5.0000	150.1596	186.7781	10.0000
9	5.0000	5.0000	5.0057	174.0993	162.8319	10.0000
10	6.4657	5.4951	5.0000	213.1296	251.6059	10.0018
11	5.0000	5.0000	5.0000	267.2870	225.6630	10.0000
12	5.0000	5.0000	5.0000	268.5359	225.6640	10.0000
13	9.4425	9.5144	7.9391	275.6909	225.9935	10.0000
14	11.5607	11.0084	13.7961	275.7616	225.8250	10.0000
15	17.6510	8.1623	10.7134	275.7424	225.6808	10.0000
16	9.4148	15.8168	11.3221	275.6839	225.6752	10.0372
17	5.0000	5.0158	5.0000	275.6376	269.1626	10.0044
18	5.0000	5.0000	5.0000	275.6632	272.2867	10.0000
19	5.6618	5.1390	6.7355	275.6671	288.4973	10.0000
20	14.1468	15.8484	13.6770	300.0000	288.4985	10.0000
21	21.1414	15.1266	14.2212	300.0000	288.4980	10.0274
22	18.6459	16.8479	15.8573	299.9952	288.5046	10.0007
23	5.8980	9.6444	10.7950	300.0000	288.4956	10.0000
24	8.9683	8.6272	7.9371	275.7280	288.5415	10.0000

TABLE V. Optimal dispatch results with ramp rate limits and VPL EFFECT USING INTERIOR POINT ALGORITHM.

Time	P1(MW)	P2(MW)	P3(MW)	P4(MW)	P5(MW)	P6(MW)
1	5.0008	5.0008	5.0008	196.2107	162.8319	10.0007
2	5.0053	5.0053	5.0053	212.8319	136.3930	10.0045
3	5.0000	5.0000	5.0000	259.0458	100.0000	10.0000
4	5.0057	5.0057	5.0057	186.1608	162.8319	10.0048
5	5.0007	5.0007	5.0007	208.1709	162.8319	10.0006
6	5.0035	5.0035	5.0035	161.6760	162.8319	10.0009
7	5.0053	5.0053	5.0053	212.8319	136.3665	10.0045
8	5.0000	5.0000	5.0000	150.0000	186.9370	10.0000
9	5.0000	5.0000	5.0000	150.0000	186.9370	10.0000
10	14.3993	14.3990	14.3985	212.8319	225.6637	10.0076
11	5.0008	5.0008	5.0008	212.8319	280.1152	10.0007
12	15.4559	15.4559	15.4554	299.9994	162.8319	10.0016
13	8.9921	8.9918	9.2627	212.8319	288.4956	10.0060
14	5.0188	5.0191	5.0190	234.3860	288.4956	10.0115
15	12.2139	12.2027	12.1984	212.8320	288.4956	10.0074
16	12.2101	12.2868	12.1182	212.8319	288.4956	10.0075
17	19.8203	14.2861	23.2076	214.0026	288.4956	10.0078
18	16.0069	16.0120	29.5956	212.8319	288.4956	10.0081
19	5.0002	5.0002	14.5957	275.6637	281.4401	10.0001
20	13.2915	16.6802	13.7013	299.9967	288.4956	10.0058
21	17.0362	17.4008	16.0768	299.9971	288.4956	10.0082
22	29.9973	29.9973	29.9975	275.7002	288.4956	14.4138
23	17.3362	17.1813	16.1484	275.6639	288.4956	10.0078
24	29.4890	29.4890	29.4891	212.8319	288.4956	10.0081

V. RESULTS

In this paper, particle swarm optimization (PSO) is used to optimize the cost function of wind-thermal generator units. It uses number of particles, looking for the best solution. Problems having noise, partial irregular, and change over time are optimized using PSO.

Rustamji Institute of Technology

A. Solving by PSO

Particle swarm optimization technique used in that case for obtaining the feasible solution with respect to the constrained. Table IV shows the result with valve point loading effects and ramp rate limits for cost function optimization using particle swarm optimization. The total cost is \$203800.

B. Solving by Interior point

Traditional technique used in that case for obtaining the feasible solution with respect to the equality and inequality constrained and reaches their feasible solution .In Table V shows the result with valve point loading effects and ramp rate limits for cost function optimization using interior point algorithm. The total cost is \$207180.

Fig. 5. Hourly distribution of cost by using PSO and interior point algorithm.

VI. CONCLUSION

A short-term optimal operation dispatch of a power generation company with integrated wind and storage is studied in this paper. The wind- thermal dispatch problem is formulated and solved by using particle swarm optimization (PSO) algorithm and interior point algorithm. Analysis with valve point loading effects and ramp rate limits is given. According to the cases study results are shown that the PSO optimization technique reaches better feasible result as compare to the interior point algorithm. So the PSO optimization technique is little better than the interior point methodology. PSO is capable to solve non-linear and non-convex irregularities while interior point cannot work with non-linearity and non-convexity.

REFERENCES

[1.] M. Abbaspour, M. Satkin, B. Mohammadi-Ivatloo, F. Hoseinzadeh Lotfi, Y. Noorollahi, "Optimal operation scheduling of wind power integrated with compressed air

energy storage (CAES)", Renewable Energy, vol. 51, (2013), pp.53-59.

- [2.] N. Rugthaicharoencheep, M. Boonthienthong, "Smart Grid for Energy
- [3.] Management on Distribution System with Distributed Generation", IEEE International Conference, May 27-31, 2012.
- [4.] Dimitrios Zafirakis , Konstantinos J. Chalvatzis, Giovanni Baiocchi, George Daskalakis, "Modeling of financial incentives for investments in energy storage systems that promote the large-scale integration of wind energy", Applied Energy, vol. 105, (2013), pp.138–154.
- [5.] Pickard W, Shen AQ, Hansing N. Parking, "the power: strategies and physical limitations for bulk energy storage in supply-demand matching on a grid whose input power is provided by intermittent sources.",
- [6.] Renewable and Sustainable Energy Reviews, 2009, vol. 13(8), pp.1934-45.
- [7.] Brown P, Lopes J, Matos M., "Optimization of pumped storage capacity in an isolated power system with large renewable penetration.", IEEE Transactions on Power Systems, 2008, vol. 23(2), pp. 523-31.
- [8.] Dimitrios Zafirakis , Konstantinos J. Chalvatzis, Giovanni Baiocchi, George Daskalaki , "Modeling of financial incentives for investments in energy storage systems that promote the large-scale integration of wind energy", Applied Energy, vol. 105, (2013), pp.138–154.
- [9.] Diaz FJ, Contreras J, Munoz JI, Pozo D., "Optimal scheduling of a price-taker cascaded reservoir system in a pool-based electricity market.", IEEE Transactions on Power Systems, 2011, vol. 26, pp. 604-15.
- [10.] Chang Y, Mao X, Zhao Y, Feng S, Chen H, Finlow D., "Lead-acid battery use in the development of renewable energy systems in china.", Journal of Power Sources, 2009, vol. 191(1), pp. 176-83.
- [11.] Cheng-Chien Kuo, "Wind energy dispatch considering environmental and economic factors", Renewable Energy, vol. 35, (2010), pp. 2217-2227.
- [12.] Samir Succar, David C. Denkenberger, Robert H. Williams, "
- [13.] Optimization of specific rating for wind turbine arrays coupled to compressed air energy storage", Applied Energy, vol. 96, (2012), pp. 222–234.
- [14.] Kristof De Vos a, Andreas G. Petoussis , Johan Driesen , Ronnie Belmans, "Revision of reserve requirements following wind power

Rustamji Institute of Technology

integration in island power systems", Renewable Energy, vol. 50, (2013),pp. 268-279.

- [15.] Jia-Chu Lee , Whei-Min Lin , Gwo-Ching Liao , Ta-Peng Tsao ,
- [16.] "Quantum genetic algorithm for dynamic economic dispatch with valve-point effects and including wind power system", Electrical Power and
- [17.] Energy Systems, vol. 33, (2011), pp. 189–197.